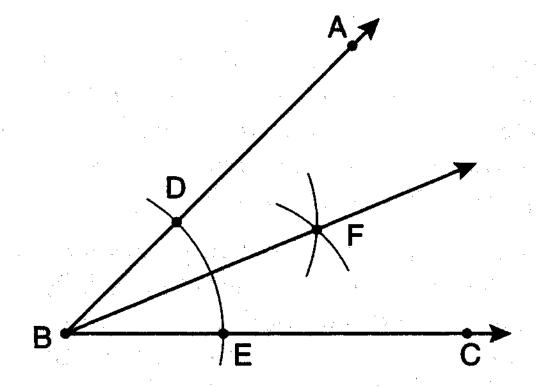

Part I

Answer all 28 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question. [56]

1 Based on the diagram below, which statement is true?

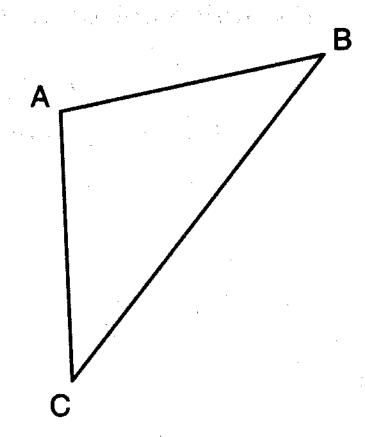
Use this space for computations.


(1) $a \parallel b$

(3) $b \parallel c$

(2) $a \parallel c$

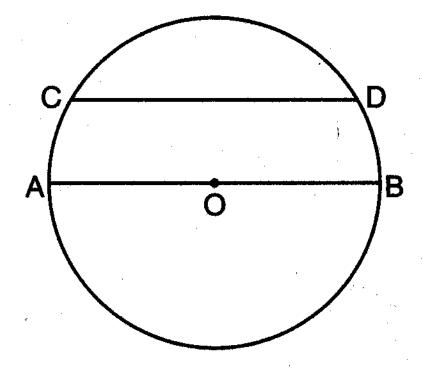
(4) $d \parallel e$


2 The diagram below shows the construction of the bisector of $\angle ABC$.

Which statement is *not* true?

- $(1) \ \mathbf{m} \angle EBF = \frac{1}{2} \, \mathbf{m} \angle ABC$
- (2) $m \angle DBF = \frac{1}{2} m \angle ABC$
- (3) $m \angle EBF = m \angle ABC$
- (4) $m \angle DBF = m \angle EBF$

3 In the diagram of $\triangle ABC$ below, $\overline{AB} \cong \overline{AC}$. The measure of $\triangle B$ is 40° .


What is the measure of $\angle A$?

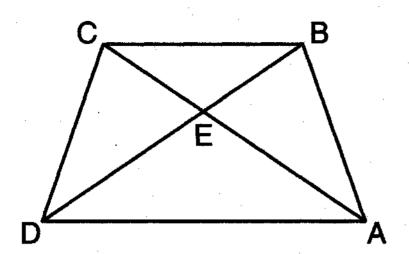
 $(1) 40^{\circ}$

 $(3) 70^{\circ}$

 $(2) 50^{\circ}$

- (4) 100°
- 4 In the diagram of circle O below, chord \overline{CD} is parallel to diameter \overline{AOB} and $\widehat{mAC} = 30$.

What is \widehat{mCD} ?


(1) 150

(3) 100

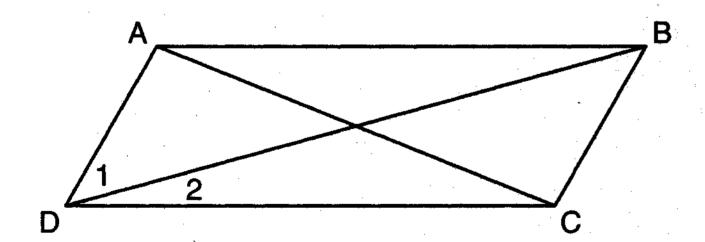
(2) 120

(4) 60

5 In the diagram of trapezoid ABCD below, diagonals \overline{AC} and \overline{BD} intersect at E and $\triangle ABC \cong \triangle DCB$.

Which statement is true based on the given information?

(1) $\overline{AC} \cong \overline{BC}$


(3) $\angle CDE \cong \angle BAD$

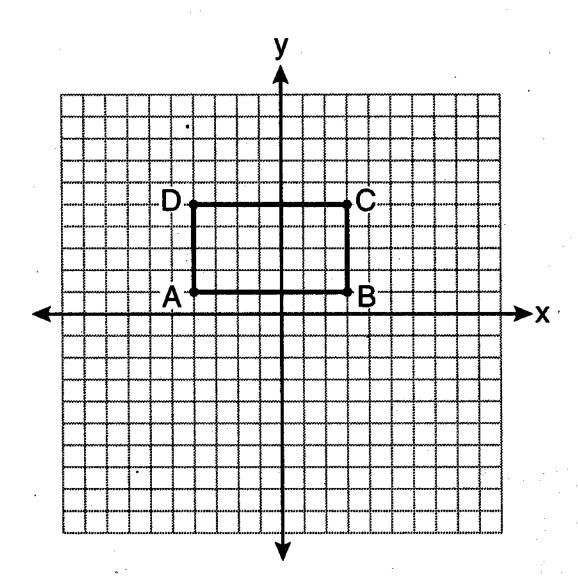
(2) $\overline{CD} \cong \overline{AD}$

- $(4) \ \angle CDB \cong \angle BAC$
- 6 Which transformation produces a figure similar but not congruent to the original figure?
 - (1) $T_{1,3}$

(2) $D_{\frac{1}{2}}$

- (3) $R_{90^{\circ}}$ (4) $r_{y=x}$
- 7 In the diagram below of parallelogram ABCD with diagonals \overline{AC} and \overline{BD} , m $\angle 1 = 45$ and m $\angle DCB = 120$.

What is the measure of $\angle 2$?


 $(1) 15^{\circ}$

(3) 45°

(2) 30°

 $(4) 60^{\circ}$

8 On the set of axes below, Geoff drew rectangle ABCD. He will transform the rectangle by using the translation $(x,y) \rightarrow (x+2,y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?

- (1) exactly 28 square units
- (2) less than 28 square units
- (3) greater than 28 square units
- (4) It cannot be determined from the information given.
- 9 What is the equation of a line that is parallel to the line whose equation is y = x + 2?

$$(1) x + y = 5$$

$$(3) y-x=-1$$

(2)
$$2x + y = -2$$

$$(4) y-2x=3$$

10 The endpoints of \overline{CD} are C(-2,-4) and D(6,2). What are the coordinates of the midpoint of \overline{CD} ?

$$(1)$$
 $(2,3)$

$$(3)$$
 $(4,-2)$

$$(2)$$
 $(2,-1)$

11 What are the center and the radius of the circle whose equation is $(x-3)^2 + (y+3)^2 = 36$?

(1) center =
$$(3,-3)$$
; radius = 6

(2) center =
$$(-3,3)$$
; radius = 6

(3) center =
$$(3,-3)$$
; radius = 36

(4) center =
$$(-3,3)$$
; radius = 36

12 Given the equations:

$$y = x^2 - 6x + 10$$
$$y + x = 4$$

What is the solution to the given system of equations?

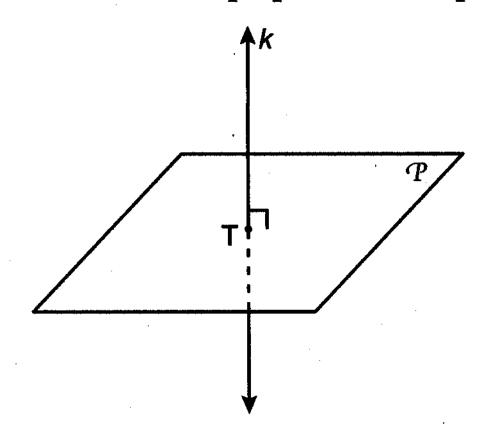
(1) (2,3)

(3) (2,2) and (1,3)

(2) (3,2)

(4) (2,2) and (3,1)

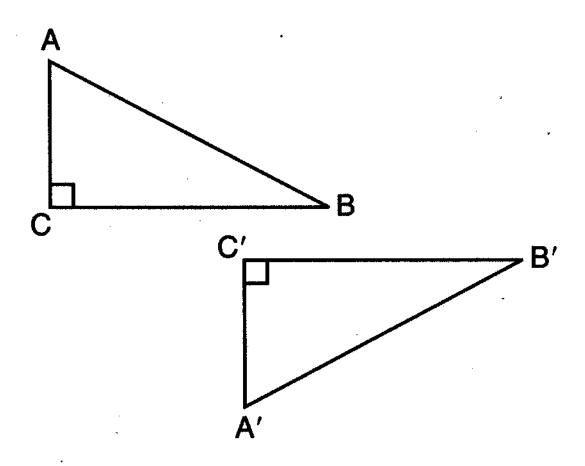
13 The diagonal \overline{AC} is drawn in parallelogram ABCD. Which method can *not* be used to prove that $\triangle ABC \cong \triangle CDA$?


(1) SSS

(3) SSA

(2) SAS

(4) ASA


14 In the diagram below, line k is perpendicular to plane T at point T.

Which statement is true?

- (1) Any point in plane \mathcal{P} also will be on line k.
- (2) Only one line in plane \mathcal{P} will intersect line k.
- (3) All planes that intersect plane \mathcal{P} will pass through T.
- (4) Any plane containing line k is perpendicular to plane \mathcal{P} .

15 In the diagram below, which transformation was used to map $\triangle ABC$ to $\triangle A'B'C'$?

(1) dilation

(3) reflection

(2) rotation

(4) glide reflection

- 16 Which set of numbers represents the lengths of the sides of a triangle?
 - (1) {5, 18, 13}

(3) {16, 24, 7}

(2) {6, 17, 22}

- (4) {26, 8, 15}
- 17 What is the slope of a line perpendicular to the line whose equation is $y = -\frac{2}{3}x 5$?
 - $(1) -\frac{3}{2}$

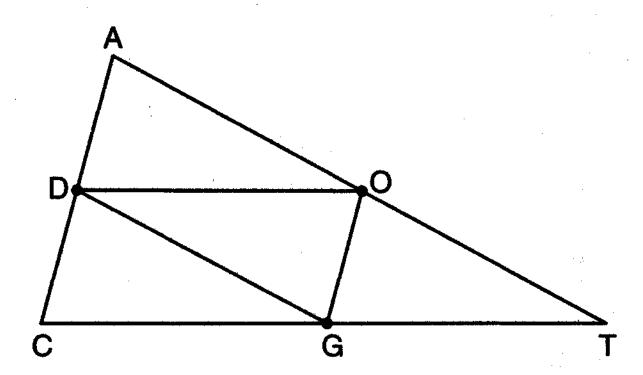
 $(3) \frac{2}{3}$

 $(2) -\frac{2}{3}$

- (4) $\frac{3}{2}$
- 18 A quadrilateral whose diagonals bisect each other and are perpendicular is a
 - (1) rhombus

(3) trapezoid

(2) rectangle

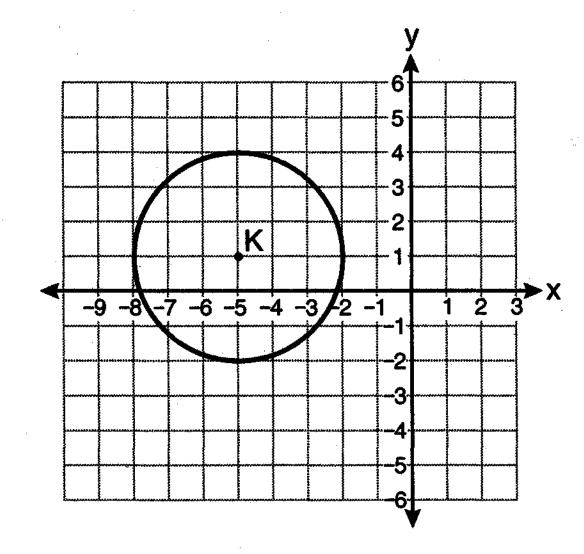

- (4) parallelogram
- 19 If the endpoints of \overline{AB} are A(-4,5) and B(2,-5), what is the length of \overline{AB} ?
 - (1) $2\sqrt{34}$

(3) $\sqrt{61}$

(2) 2

(4) 8

20 In the diagram below of $\triangle ACT$, D is the midpoint of \overline{AC} , O is the midpoint of \overline{AT} , and G is the midpoint of \overline{CT} .

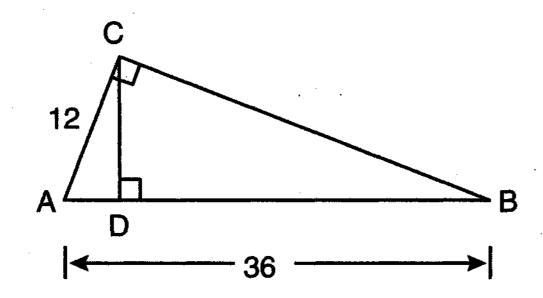

If AC = 10, AT = 18, and CT = 22, what is the perimeter of parallelogram *CDOG*?

(1) 21

(3) 32

(2) 25

- (4) 40
- 21 Which equation represents circle K shown in the graph below?


(1)
$$(x+5)^2 + (y-1)^2 = 3$$
 (3) $(x-5)^2 + (y+1)^2 = 3$

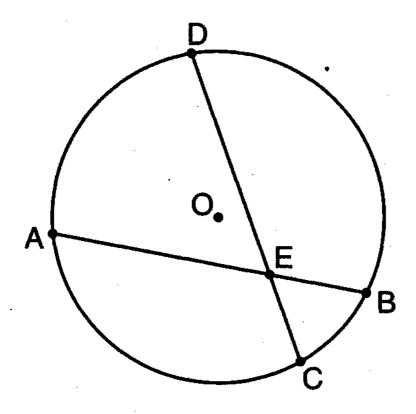
(3)
$$(x-5)^2 + (y+1)^2 = 3$$

(2)
$$(x+5)^2 + (y-1)^2 = 9$$
 (4) $(x-5)^2 + (y+1)^2 = 9$

$$(4) (x-5)^2 + (y+1)^2 = 9$$

22 In the diagram below of right triangle ACB, altitude \overline{CD} is drawn to hypotenuse \overline{AB} .

If AB = 36 and AC = 12, what is the length of \overline{AD} ?


(1) 32

 $(3) \ 3$

(2) 6

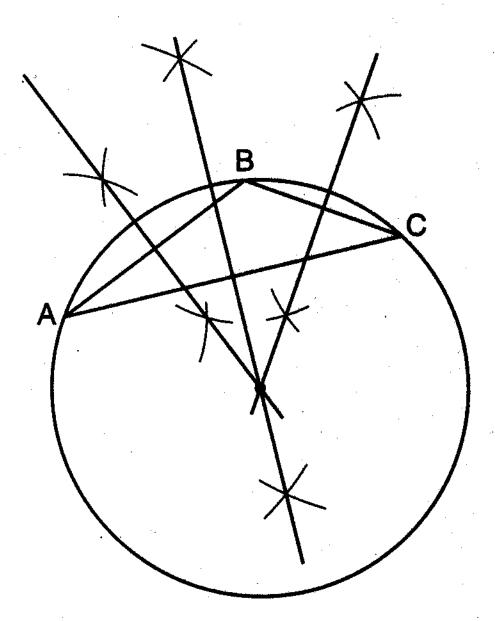
(4) 4

23 In the diagram of circle O below, chord \overline{AB} intersects chord \overline{CD} at E, DE = 2x + 8, EC = 3, AE = 4x - 3, and EB = 4.

What is the value of x?

(1) 1

(3) 5


(2) 3.6

(4) 10.25

24 What is the negation of the statement "Squares are parallelograms"?

- (1) Parallelograms are squares.
- (2) Parallelograms are not squares.
- (3) It is not the case that squares are parallelograms.
- (4) It is not the case that parallelograms are squares.

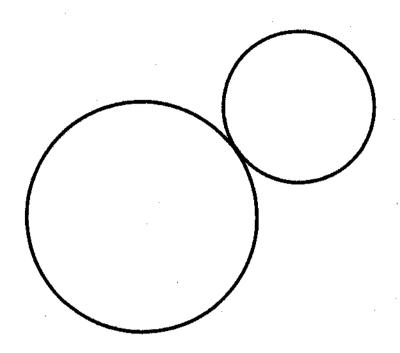
25 The diagram below shows the construction of the center of the circle circumscribed about $\triangle ABC$.

This construction represents how to find the intersection of

- (1) the angle bisectors of $\triangle ABC$
- (2) the medians to the sides of $\triangle ABC$
- (3) the altitudes to the sides of $\triangle ABC$
- (4) the perpendicular bisectors of the sides of $\triangle ABC$
- 26 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?
 - (1) 6.3

(3) 19.8

(2) 11.2


- (4) 39.8
- 27 If two different lines are perpendicular to the same plane, they are
 - (1) collinear

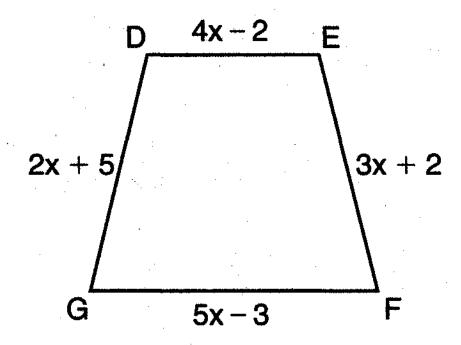
(3) congruent

(2) coplanar

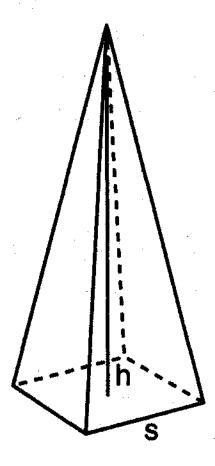
(4) consecutive

28 How many common tangent lines can be drawn to the two externally tangent circles shown below?

(1) 1

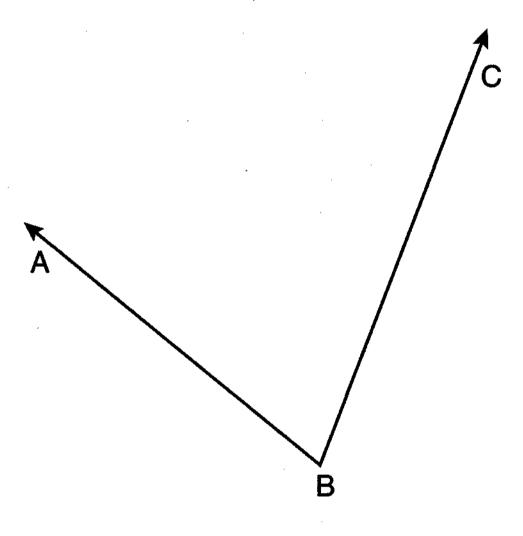

(3) 3

(2) 2

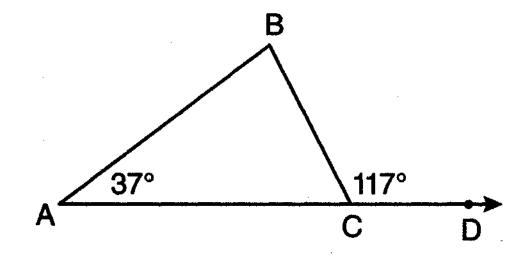

(4) 4

Answer all 6 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

29 In the diagram below of isosceles trapezoid DEFG, $\overline{DE} \parallel \overline{GF}$, DE = 4x - 2, EF = 3x + 2, FG = 5x - 3, and GD = 2x + 5. Find the value of x.


30 A regular pyramid with a square base is shown in the diagram below.

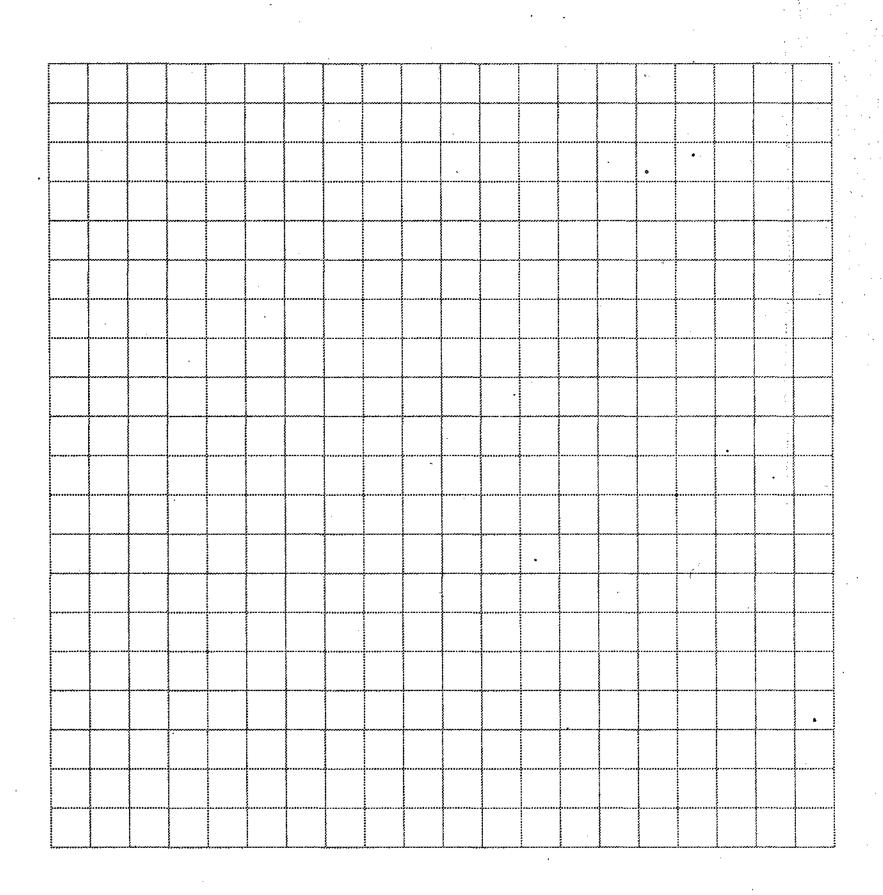
A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

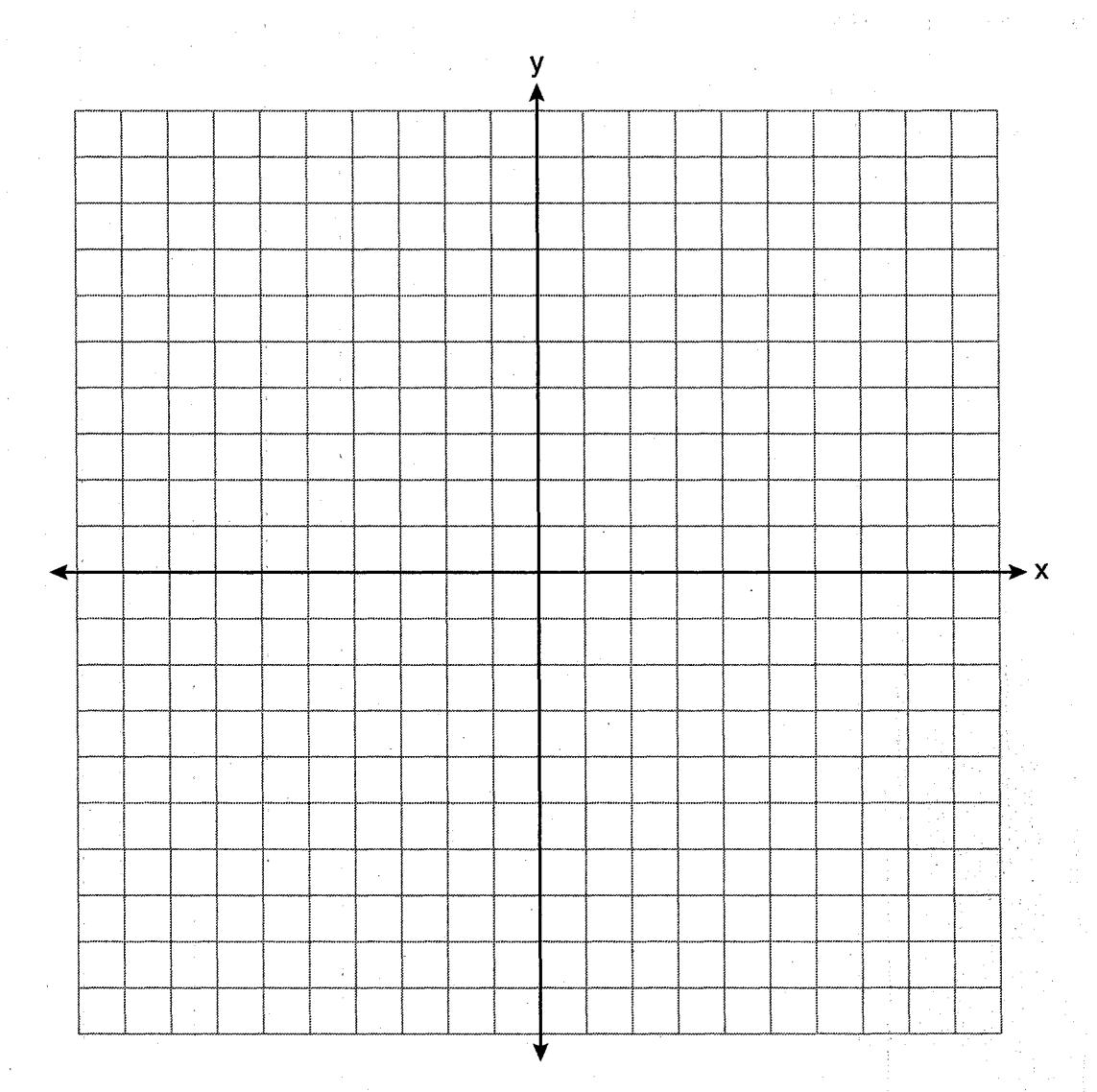

31 Write an equation is $2x - 2x $	ion of the line that part $-3u = 11$	asses through the po	oint $(6,-5)$ and is p	parallel to the line whose
equation is 20	oy 11.	· •	,	
		· · · · · · · · · · · · · · · · · · ·		
			•	
	•	,		

			•	
4				
,				•
•				

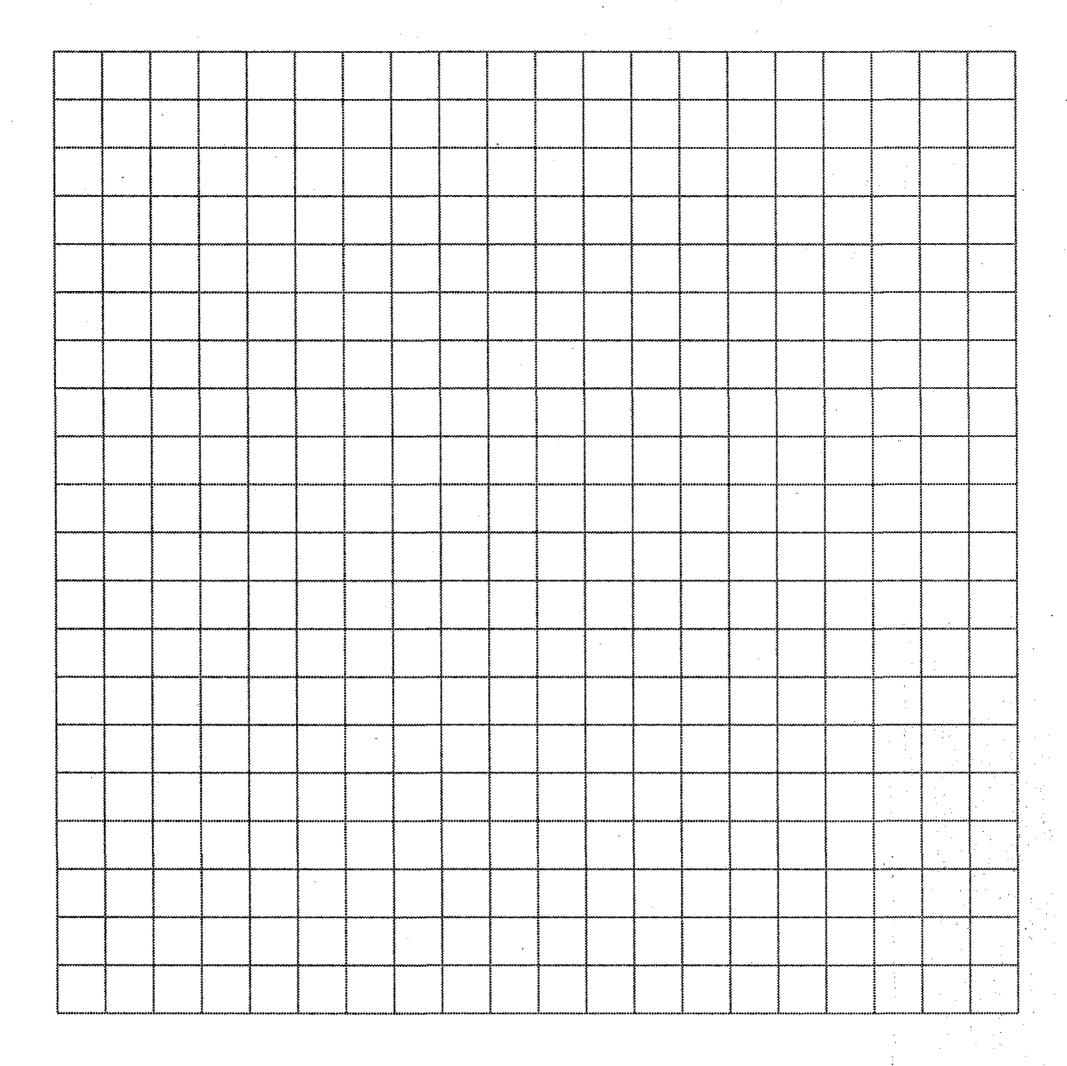
32 Using a compass and straightedge, construct the angle bisector of $\angle ABC$ shown below. [Leave all construction marks.]

33 The degree measures of the angles of $\triangle ABC$ are represented by x , $3x$, and $5x - 54$. Find the value of x .					
· ·					

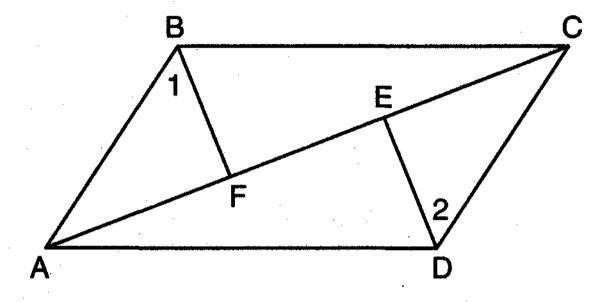

34 In the diagram below of $\triangle ABC$ with side \overline{AC} extended through D, m $\angle A=37$ and m $\angle BCD=117$. Which side of $\triangle ABC$ is the longest side? Justify your answer.


(Not drawn to scale)

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]


35 Write an equation of the perpendicular bisector of the line segment whose endpoints are (-1,1) and (7,-5). [The use of the grid below is optional.]

36 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line y = 3. Label with an **X** all points that satisfy both conditions.


37 Triangle DEG has the coordinates D(1,1), E(5,1), and G(5,4). Triangle DEG is rotated 90° about the origin to form $\Delta D'E'G'$. On the grid below, graph and label ΔDEG and $\Delta D'E'G'$. State the coordinates of the vertices D', E', and G'. Justify that this transformation preserves distance.

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. A correct numerical answer with no work shown will receive only 1 credit. The answer should be written in pen. [6]

38 Given: Quadrilateral ABCD, diagonal \overline{AFEC} , $\overline{AE} \cong \overline{FC}$, $\overline{BF} \perp \overline{AC}$, $\overline{DE} \perp \overline{AC}$, $\angle 1 \cong \angle 2$

Prove: ABCD is a parallelogram.

